
Discriminative Quantization for Fast Image Search

Sepehr Eghbali Ladan Tahvildari

University of Waterloo

{sepehr.eghbali, ladan.tahvildari}@uwaterloo.ca

Abstract

Recent decade has witnessed a growing surge of research

on encoding high-dimensional objects with compact dis-

crete codes. In this paper, we present a new supervised

quantization technique to learn discriminative and compact

codes for large scale retrieval tasks. To achieve fast and

accurate search, the proposed algorithm learns a discrimi-

native embedding of the input points and at the same time

encodes the embedded points with compact codes to reduce

storage cost.

1. Introduction

Recently, compact coding techniques have become in-

creasingly popular due to their ability to compress high di-

mensional data using discrete and compact representation.

With this view, unsupervised compact coding techniques

try to find codes that are the well aligned with the Eu-

clidean distances of the input vectors. Literature abounds

with examples of unsupervised binary hashing and quan-

tization (see [13] for an overview). Parallelly, supervised

compact coding, specially supervised binary hashing, has

been the topic of much work in recent years [3]. In the su-

pervised setting, the goal is to encode input vectors with

compact codes which are faithful to a notation of semantic

similarity.

One shortcoming of binary hashing techniques is that

there are only a few possible distances between bi-

nary codes which results in limited ability to describe

the distances between data points. On the other hand,

quantization-based techniques can produce extremely large

number of possible distances by decomposing the space into

a Cartesian product of subspaces and quantizing each sub-

space separately [4, 11, 8]. However, this comes at the cost

of slightly higher query time in quantization techniques.

While unsupervised quantization has been extensively stud-

ied, only a few recent studies have addressed its supervised

counterpart [14].

In this paper, we put forward a new supervised quanti-

zation technique, called Discriminative Quantization (DQ),

that incorporates a form of a triplet loss function to address

the shortcomings of existing techniques. Our approach per-

forms two simultaneous tasks in order to achieve fast and

scalable nearest neighbor search. First task is learning a

mapping from the input space to a discriminative Euclidean

space where distances directly correspond to the semantic

similarity. The mapping is also responsible for enhancing

the quantilzibilty of input vectors. The second task is quan-

tizing the mapped vectors in order to achieve fast distance

computation.

2. Formulation

Given a query q ∈ R
d and a set of n points X =

{xi}
n
i=1,xi ∈ R

d with each point associated with a class

label yi ∈ {1, . . . , c}, the goal is to preprocess the data in

order to find theK nearest items to q as fast as possible such

that the found items share the same label with the query. In

this paper, we address this problem in its approximate set-

ting in which xis are approximated with discrete compact

codes and nearest neighbor search is performed among such

codes.

2.1. Semantic Discrimination

We strive for an embedding function f(x;w) : Rd →
R

p parameterized with vector w, such that the squared dis-

tance between the mapped points with the same class label

is smaller than the squared distance between a pair of data

points with different labels. In our approach, the parame-

ters of f are trained on the triplet data (x,x+,x−) ∈ T
such that x and x+ are from the same class label while x−

is from a different class. Formally, we want to:

‖f(x;w)− f(x+;w)‖22 + α < ‖f(x;w)− f(x−;w)‖22

∀(x,x+,x−) ∈ T ,

(1)

where α is a margin that in enforced between positive and

negative pairs and T is the set of triplets. Therefore, the loss

1

function takes the form of:

L(w) =
∑

(x,x+,x−)∈T

[‖f(x;w)− f(x+;w)‖22−

‖f(x;w)− f(x−;w)‖22 + α]+,

(2)

where [.]+ = max(0, .) is the standard hinge loss function.

2.2. Fast Distance Computation

To achieve fast distance computation, we propose to em-

ploy the state-of-the-art composite quantization (CQ) [16],

a member of multi-codebook quantization (MCQ) family.

The idea behind MCQ is to create multiple dictionaries (say

m of them) and learn h codewords per dictionary with the

goal of minimizing the reconstruction error. Formally, the

product quantization based techniques aim to minimize the

quantization error which in our problem takes the following

form:

Q(C,B) =
n
∑

i=1

‖f(xi;w)−
m
∑

j=1

Cjbij‖
2
2

s.t. bij ∈ {0, 1}h, ‖bij‖1 = 1,

(3)

where bij is a binary vector that selects 1-of-h encodings

from the j-th dictionary, Cj ∈ R
p×h is a matrix whose

columns represent the codewords of the j-th dictionary.

Also, C = [C1, . . . ,Cm] ∈ R
p×mh denotes the matrix of

dictionaries and B = [b1, . . . ,bn] ∈ {0, 1}h×nm denotes

the matrix of indices where bi = [bT
i1, . . . ,b

T
im]T .

Optimizing (3) in general is intractable. There-

fore, different techniques introduce various constraints to

make the optimization feasible. In particular, CQ intro-

duces an extra constraint such that for each xi we have
∑

j 6=t b
T
ijC

T
j Ctbit = ǫ known as the constant inter-

dictionary-element-product constraint.

2.3. Optimization Problem

In our study, we perform simultaneous representation

learning and quantization by integrating the introduced

triplet and quantization losses. By adding simple regular-

izer on the vector of unknown parameter w , the overall

objective function is given as follows:

min
w,C,{bi}n

i=1
,ǫ
L(w) + λQ(C,B) +

γ

2
‖w‖22

s.t.
∑

j 6=t

bT
ijC

T
j Ctbit = ǫ ∀i ∈ [n],

(4)

where λ and γ are trade-off parameters between the triplet

loss, quantization loss and the regularizer.

Intuitively, the transformation f is responsible for im-

proving both the semantic discrimination and quantizability

of the transformed vectors. Note that not all vectors can be

quantized efficiently with vector quantization. If input vec-

tors do not exhibit a cluster structure then they cannot be

quantized accurately [1].

2.4. Querying

During the search phase, given the query q, first the

transformation f is applied to query vector q, q′ =
f(q;w), and then the distance between q′ and transformed

items, X ′ = {x′
1, . . . ,x

′
n} where x′

i = f(xi;w), are ap-

proximated using the codewords that they belong to:

‖q′ − x′
i‖

2
2 ≈ ‖q′ −Cbi‖

2
2 =

m
∑

j=1

‖q′ −Cjbij‖
2
2 − (m− 1)‖q′‖22 +

m
∑

j 6=t

bT
ijC

T
j Ctbit.

(5)

For a given query, the term (m − 1)‖q′‖22 is constant

for all x′
is. Also, because of the introduced constant

inter-dictionary-element-product condition the third term,
∑

j 6=t b
T
ijC

T
j Ctbit, is also constant (equal to ǫ). Therefore,

finding the nearest neighbors to q can be achieved by only

computing the distance between q′ and the selected dictio-

nary elements. The main advantage of product quantization

based techniques is that they enable fast distance computa-

tion by precomputing the distances between q′ and all dic-

tionary elements and saving them in an m× h lookup table

at the beginning of the query phase. Doing this, computing
∑m

j=1 ‖q−Cjbij‖
2
2 boils down to m distance lookups and

m addition operations.

2.5. Optimization Procedure

The optimization consists of 4 groups of unknown vari-

ables: parameters of the transformation function w, dic-

tionaries C, binary indicator vectors B and the constant ǫ.

Following [16], we combine the objective function with the

constraint using the quadratic penalty method:

min
w,C,{bi}n

i=1
,ǫ
J = L(w) + λQ(C,B) +

γ

2
‖w‖22+

µ

n
∑

i=1





m
∑

j 6=t

(bT
ijC

T
j Ctbit − ǫ)2



 .

(6)

To optimize the parameters, we use alternative optimization

in which each iteration alternatively updates w,B,C and ǫ.

The details are given below:

Update B. Fixing w,C and ǫ, it is easy to see that the

choice of indicator vector for the ith data point, bi, is in-

dependent of all other points, {bt}t 6=i. As a result, the op-

timization problem can be decomposed into n independent

subproblems.

ψ(bi) = ‖f(xi;w)−Cbi‖
2
2 + µ

m
∑

j 6=t

(bT
ijC

T
j Ctbit − ǫ)2.

(7)

In general, this optimization problem is NP-hard. Here we

again use alternative optimization and solve each of the j-th

subvectors {bij}
h
j=1 alternatively. For updating bij , we fix

{bit}t 6=j and then exhaustively check all codewords in Cj

(meaning that we try all possible values of bij) and select

the one that minimizes the objective function in (7).

Update ǫ. It is easy to see that the objective function in (6)

is quadratic in ǫ and we have a closed-form solution to ǫ:

ǫ =
1

n

n
∑

i=1

h
∑

j 6=t

bT
ijC

T
j Ctbit. (8)

Update C. Fixing w,B and ǫ, the optimization problem

is an unconstraint nonlienar optimization problem with re-

spect to C. To solve it, we use L-BFGS algorithm which

is the limited version of Fletcher-Goldfarb-Shanno (BFGS)

algorithm and has a publicly available implementation1. L-

BFGS takes the objective function and its derivative with

respect to the variable of interest and iteratively updates the

variable. The partial derivative of (6) with respect to Ct is:

n
∑

i=1

[

− 2

h
∑

j=1

(xi −Cjbij)b
T
it+

4µ

m
∑

k 6=j

(bT
ikC

T
kCjbij − ǫ)(

m
∑

j=1,j 6=t

Cjbij)b
T
it

]

.

(9)

Update w: To learn w, we use stochastic gradient descent.

The gradient of the objective function J with respect to

w can be computed as follows. Let s((x,x+,x);w) =
‖f(x;w) − f(x+;w)‖22 − ‖f(x;w) − f(x−;w)‖22 + α,

and let Ii denote the i-th triplet in τ then we have:

∂J

∂w
=

|τ |
∑

i=1

g(Ii,w)+λ

n
∑

i=1

2(f(xi;w)−Cbi)+γw (10)

g(Ii,w) =

{

∂s(Ii,w)
∂w

s(Ii,w) > 0

0 s(Ii,w) ≤ 0

∂s

∂w
=2(f(x)− f(x+))

∂f(x)− ∂f(x+)

∂w
−

2(f(x)− f(x−))
∂f(x)− ∂f(x−)

∂w
.

(11)

1users.iems.northwestern.edu/˜nocedal/lbfgsb.

html

From the above derivations, it is clear that the gra-

dient on each input triplet can be easily computed

given the values of f(x;w), f(x+;w), f(x−;w) and
∂f(x;w)

∂w
,
∂f(x+;w)

∂w
,
∂f(x−;w)

∂w
.

2.6. Triplet Selection.

For large-scale datasets, it is impossible to train the algo-

rithm on all O(n3) possible triplets. Moreover, generating

all triplets would result in many triplets that are easily sat-

isfied (i.e. fulfilling the constraint in (1)). Such triplets do

not contribute to the training procedure and result in slower

optimization as they would still be passed through the trans-

formation f . Therefore, it is crucial to choose hard triplets

that are active and contribute to improving the model.

To form the triplets, in our experiments we use mini-

batches of 200 datapoints. For each mini-batch, we form

200 triplets by randomly selecting pairs (x,x+) such that

both items have the same class label. Then, for each pair,

we sort all the transformed vectors in the batch based on

their Euclidean distance from f(x) in ascending order. Fi-

nally, we find x+ in the ordering and select the first item

after it that has a different class label from x, as x−. Al-

though it may seem more intuitive to select the hardest neg-

ative (i.e. is the last item in the ordering with a different

class label compared to x), we observed that it can make

the optimization algorithm stuck in bad local minima early

on in training.

3. Experiments

To gauge the performance of the proposed supervised

quantization technique, we conduct experiments on two

widely used large-scale face image datasets. We compare

our technique with several state-of-the-art supervised hash-

ing and quantization methods.

3.1. Experimental Setting

Our method, denoted by DQ, is compared with six

state-of-the-art supervised compact coding methods: super-

vised discrete hashing (SDH) [12], FastHash [6], binary re-

constructive embedding (BRE) [5], minimal loss hashing

(MLH) [10], supervised quantization (SQ) [14], iterative

quantization (ITQ) [2]. For all algorithms, we use their pub-

lic implementation expect that for SQ we implemented it in

Python as its public implementation is not available.

We use a two-layer neural network with 500-dimensional

hidden layer with weight matrices W1 and W2 such that

the transformation function can be expressed as f(x) =
tanh(W2 tanh(W1x)). We also adopt the kernel based

representation [12] for SDH and SQ as it has been shown to

boost the performance.

Parameter Settings. The objective function in (6) has

three trade-off parameters: λ for the quantization loss term,

16 24 32 48 64
0

0.1

0.2

0.3

0.4

0.5

Code length (bits)

M
A

P

YouTube Faces

ITQ

BRE

KSH

SDH

FastH

SQ

DQ

(a)

16 24 32 48 64
0

1

2

3

4
·10−2

Code length (bits)

M
A

P

FaceScrub

(b)

Figure 1: Mean average precision for different lengths of

code.

γ for the regularization term and µ for penalizing the the

equality constraint term. We set these parameters using a

validation set of size 1,000. The best setting of parameters

are chosen so that the average search performance in terms

of MAP is maximized for the validation set. We preset the p

(the dimension of the discrimintative space) to 128 and α to

1, although tuning them may result in better performance.

Finally, we choose h = 256 to be the dictionary size so that

the each subcenter index (bij) fits into one byte.

3.2. Datasets

To evaluate our method with the proposed evaluation

protocols, we require datasets with large number of class

labels. Interestingly, face identification benchmarks satisfy

this requirement as we often have hundreds of class labels

in such datasets. For this reason, we use the following two

public face identification benchmarks:

YouTube Faces [15] contains 3,452 videos of 1,595

unique persons. From the videos, 40 faces per person are

selected for the experiments which gives us 63800 images.

FaceScrub [9] includes a total of 106,863 face images

of 530 celebrities, with almost 200 images per person. It is

considered as one of the largest public face datasets.

Following [7], we utilize 236-dimensional LBP feature

vectors to represent the visual content.

3.3. Results and Discussions

To evaluate the performance of different techniques, for

YouTube Faces dataset, we extract 5 images per person

from the videos to form the query set. Therefore, we have

63800 images as the base/training set and 7975 images in

the query set for which the average performance is reported.

Similarly, for the FaceScrube dataset, we select 5 images

per person as the query set and the remaining as the base.

Figure 1 shows the MAP values for different code

lengths. It can be seen that DQ achieves the best perfor-

mance and SQ is the second best among the supervised

compact coding techniques for all code lengths. Also, Fig-

ure 1 illustrates that quantization based techniques tend

to outperform binary hashing techniques. However, this

comes at the cost of slightly longer query time (not shown)

which is expected as the Hamming distance between binary

codes can be computed extremely fast.

Another observation is that the relative difference be-

tween the performance of DQ and other techniques is more

substantial on the YouTube dataset. Considering that the

number of class labels in YouTube dataset is almost triple

the FaceScrube, we conjecture that DQ tends to exhibit su-

perior performance specially when the number of class la-

bels is large. However, more empirical evaluations are re-

quired to validate this claim.

References

[1] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quanti-

zation. TPAMI, 36(4):744–755, 2014. 2

[2] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. TPAMI, 35(12):2916–

2929, 2013. 3

[3] Z. Hu, J. Chen, H. Lu, and T. Zhang. Bayesian supervised

hashing. In CVPR, 2017. 1

[4] H. Jegou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. TPAMI, 33(1):117–128, 2011. 1

[5] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In NIPS, 2009. 3

[6] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and

D. Suter. Fast supervised hashing with decision trees for

high-dimensional data. In CVPR, pages 1963–1970, 2014.

3

[7] J. Lin, Z. Li, and J. Tang. Discriminative deep hashing for

scalable face image retrieval. In IJCAI, 2017. 4

[8] J. Martinez, S. Zakhmi, H. H. Hoos, and J. J. Little. Lsq++:

Lower running time and higher recall in multi-codebook

quantization. In ECCV, pages 491–506, 2018. 1

[9] H.-W. Ng and S. Winkler. A data-driven approach to clean-

ing large face datasets. In ICIP, pages 343–347, 2014. 4

[10] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-

pact binary codes. In ICML, pages 353–360, 2011. 3

[11] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,

pages 3017–3024, 2013. 1

[12] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised dis-

crete hashing. In CVPR, pages 37–45, 2015. 3

[13] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity

search: A survey. arXiv preprint arXiv:1408.2927, 2014. 1

[14] X. Wang, T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Su-

pervised quantization for similarity search. In CVPR, pages

2018–2026, 2016. 1, 3

[15] L. Wolf, T. Hassner, and I. Maoz. Face recognition in un-

constrained videos with matched background similarity. In

CVPR, pages 529–534, 2011. 4

[16] T. Zhang, C. Du, and J. Wang. Composite quantization for

approximate nearest neighbor search. In ICML, pages 838–

846, 2014. 2

