This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Discriminative Quantization for Fast Image Search

Sepehr Eghbali Ladan Tahvildari
University of Waterloo

{sepehr.eghbali, ladan.tahvildari}@uwaterloo.ca

Abstract

Recent decade has witnessed a growing surge of research
on encoding high-dimensional objects with compact dis-
crete codes. In this paper, we present a new supervised
quantization technique to learn discriminative and compact
codes for large scale retrieval tasks. To achieve fast and
accurate search, the proposed algorithm learns a discrimi-
native embedding of the input points and at the same time
encodes the embedded points with compact codes to reduce
storage cost.

1. Introduction

Recently, compact coding techniques have become in-
creasingly popular due to their ability to compress high di-
mensional data using discrete and compact representation.
With this view, unsupervised compact coding techniques
try to find codes that are the well aligned with the Eu-
clidean distances of the input vectors. Literature abounds
with examples of unsupervised binary hashing and quan-
tization (see [13] for an overview). Parallelly, supervised
compact coding, specially supervised binary hashing, has
been the topic of much work in recent years [3]. In the su-
pervised setting, the goal is to encode input vectors with
compact codes which are faithful to a notation of semantic
similarity.

One shortcoming of binary hashing techniques is that
there are only a few possible distances between bi-
nary codes which results in limited ability to describe
the distances between data points. On the other hand,
quantization-based techniques can produce extremely large
number of possible distances by decomposing the space into
a Cartesian product of subspaces and quantizing each sub-
space separately [4, |1, 8]. However, this comes at the cost
of slightly higher query time in quantization techniques.
While unsupervised quantization has been extensively stud-
ied, only a few recent studies have addressed its supervised
counterpart [14].

In this paper, we put forward a new supervised quanti-
zation technique, called Discriminative Quantization (DQ),

that incorporates a form of a triplet loss function to address
the shortcomings of existing techniques. Our approach per-
forms two simultaneous tasks in order to achieve fast and
scalable nearest neighbor search. First task is learning a
mapping from the input space to a discriminative Euclidean
space where distances directly correspond to the semantic
similarity. The mapping is also responsible for enhancing
the quantilzibilty of input vectors. The second task is quan-
tizing the mapped vectors in order to achieve fast distance
computation.

2. Formulation

Given a query q € R? and a set of n points X =
{x;}"_,,x; € R? with each point associated with a class
label y; € {1,...,c}, the goal is to preprocess the data in
order to find the K nearest items to q as fast as possible such
that the found items share the same label with the query. In
this paper, we address this problem in its approximate set-
ting in which x;s are approximated with discrete compact
codes and nearest neighbor search is performed among such
codes.

2.1. Semantic Discrimination

We strive for an embedding function f(x;w) : R —
RP parameterized with vector w, such that the squared dis-
tance between the mapped points with the same class label
is smaller than the squared distance between a pair of data
points with different labels. In our approach, the parame-
ters of f are trained on the triplet data (x,x%,x~) € T
such that x and x™ are from the same class label while x~
is from a different class. Formally, we want to:

1f(x;w) = f(xtw)[3 + o < [[f(xsw) — f(x73w)l3
V(x,x",x7) €T,
(1)

where « is a margin that in enforced between positive and
negative pairs and 7 is the set of triplets. Therefore, the loss

function takes the form of:

Liw)= > (Ifesw) -

(x,xt,x—)eT

1f(x;w) —

FxF w3~

FET5 w3 + ol
6)

where [.]; = max(0,.) is the standard hinge loss function.
2.2. Fast Distance Computation

To achieve fast distance computation, we propose to em-
ploy the state-of-the-art composite quantization (CQ) [16],
a member of multi-codebook quantization (MCQ) family.
The idea behind MCQ is to create multiple dictionaries (say
m of them) and learn i codewords per dictionary with the
goal of minimizing the reconstruction error. Formally, the
product quantization based techniques aim to minimize the
quantization error which in our problem takes the following
form:

=Y [If(xizw) =Y Cjbyli3
i=1 =1

st. by € {0,1}", byl =1,

3)

where b;; is a binary vector that selects 1-of-h encodings
from the j-th dictionary, C; € RP*" is a matrix whose
columns represent the codewords of the j-th dictionary.

Also, C = [Cq,...,C,] € Rpxmh denotes the matrix of
dictionaries and B = [by,...,b,] € {0,1}"*"™ denotes
the matrix of indices where b, = [b%,...,b% 17.

Optimizing (3) in general is intractable. There-
fore, different techniques introduce various constraints to
make the optimization feasible. In particular, CQ intro-
duces an extra constraint such that for each x; we have
Zj £t bgC?Ctbit = ¢ known as the constant inter-
dictionary-element-product constraint.

2.3. Optimization Problem

In our study, we perform simultaneous representation
learning and quantization by integrating the introduced
triplet and quantization losses. By adding simple regular-
izer on the vector of unknown parameter w , the overall
objective function is given as follows:

min L(w) + AQ(C,B) +

RATEE
w,C{b;}7_, ¢ 5 vl

4
sty bLCICby =c Vie[n], @
J#t

where A and ~y are trade-off parameters between the triplet
loss, quantization loss and the regularizer.

Intuitively, the transformation f is responsible for im-
proving both the semantic discrimination and quantizability

of the transformed vectors. Note that not all vectors can be
quantized efficiently with vector quantization. If input vec-
tors do not exhibit a cluster structure then they cannot be
quantized accurately [1].

2.4. Querying

During the search phase, given the query q, first the
transformation f is applied to query vector q, ' =
f(q; w), and then the distance between q and transformed
items, X’ = {x},...,x),} where x; = f(x;;w), are ap-
proximated using the codewords that they belong to:

la" = i[5 ~ [[d' — Cbyl3 =

m

> lld’ (m—=Dld[l3 + Zb .C/ Cibjy.
j=1

J#t

— C;byl3 —
(5)

For a given query, the term (m — 1)||q’||3 is constant
for all x;s. Also, because of the introduced constant
inter-dictionary-element-product condition the third term,
> fon biTj C]TCtbit, is also constant (equal to €). Therefore,
finding the nearest neighbors to q can be achieved by only
computing the distance between q’ and the selected dictio-
nary elements. The main advantage of product quantization
based techniques is that they enable fast distance computa-
tion by precomputing the distances between q’ and all dic-
tionary elements and saving them in an m x h lookup table
at the beginning of the query phase. Doing this, computing
>-1t1 la— C;bi;]|3 boils down to m distance lookups and
m addition operations.

2.5. Optimization Procedure

The optimization consists of 4 groups of unknown vari-
ables: parameters of the transformation function w, dic-
tionaries C, binary indicator vectors B and the constant e.
Following [16], we combine the objective function with the
constraint using the quadratic penalty method:

min J=L(w)+AQ(C,B) +

¥ 2
w,C,{b;}7_ e 2 HWH2+

(6)

uzn: f:bTC C/by —¢€)?

i=1 \ j#t

To optimize the parameters, we use alternative optimization
in which each iteration alternatively updates w, B, C and .
The details are given below:

Update B. Fixing w,C and ¢, it is easy to see that the
choice of indicator vector for the ith data point, b;, is in-
dependent of all other points, {b; };-;. As a result, the op-
timization problem can be decomposed into n independent
subproblems.

Y(bi) = || f(xi;w) = Chyl5 + 1) (b;,CT Ciby — €)*.

At

(7
In general, this optimization problem is NP-hard. Here we
again use alternative optimization and solve each of the j-th
subvectors {b;;}/_, alternatively. For updating b;;, we fix
{bit }+»; and then exhaustively check all codewords in C;
(meaning that we try all possible values of b;;) and select
the one that minimizes the objective function in (7).
Update e. It is easy to see that the objective function in (6)
is quadratic in € and we have a closed-form solution to e:

ffZZbTC C.bi (8)

i=1 j#t

Update C. Fixing w, B and e, the optimization problem
is an unconstraint nonlienar optimization problem with re-
spect to C. To solve it, we use L-BFGS algorithm which
is the limited version of Fletcher-Goldfarb-Shanno (BFGS)
algorithm and has a publicly available implementation'. L-
BFGS takes the objective function and its derivative with
respect to the variable of interest and iteratively updates the
variable. The partial derivative of (6) with respect to C; is:

h

>[- 22

=1

— C,b;;))b+
€))

m

4y (bRCICby — o Y cjbij)bl?;]
ey =157t

Update w: To learn w, we use stochastic gradient descent.
The gradient of the objective function J with respect to
w can be computed as follows. Let s((x,xT,x);w) =
1f(xsw) = fxF w3 = If G w) = fxT5 w3 +
and let I; denote the i-th triplet in 7 then we have:

7]
Z (f(xi;w) —Cb;)+yw (10)

Ol jz:g L,VV
=1

Os(I;,w)
[ﬁ — ow

S = X+
aaTv =2(f(x) — ﬂxﬂ)w_ (11)
2(f(x) —f(X‘))W'

'users.iems.northwestern.edu/*nocedal/lbfgsb.

html

From the above derivations, it is clear that the gra-
dient on each input triplet can be easily computed
given the values of f(x;w),f(x";w), f(x ;w) and
of(xiw) Of(x*iw) Of(x"iw)

ow ! ow ’ ow

2.6. Triplet Selection.

For large-scale datasets, it is impossible to train the algo-
rithm on all O(n?) possible triplets. Moreover, generating
all triplets would result in many triplets that are easily sat-
isfied (i.e. fulfilling the constraint in (1)). Such triplets do
not contribute to the training procedure and result in slower
optimization as they would still be passed through the trans-
formation f. Therefore, it is crucial to choose hard triplets
that are active and contribute to improving the model.

To form the triplets, in our experiments we use mini-
batches of 200 datapoints. For each mini-batch, we form
200 triplets by randomly selecting pairs (x,x™") such that
both items have the same class label. Then, for each pair,
we sort all the transformed vectors in the batch based on
their Euclidean distance from f(x) in ascending order. Fi-
nally, we find x* in the ordering and select the first item
after it that has a different class label from x, as x~. Al-
though it may seem more intuitive to select the hardest neg-
ative (i.e. is the last item in the ordering with a different
class label compared to x), we observed that it can make
the optimization algorithm stuck in bad local minima early
on in training.

3. Experiments

To gauge the performance of the proposed supervised
quantization technique, we conduct experiments on two
widely used large-scale face image datasets. We compare
our technique with several state-of-the-art supervised hash-
ing and quantization methods.

3.1. Experimental Setting

Our method, denoted by DQ, is compared with six
state-of-the-art supervised compact coding methods: super-
vised discrete hashing (SDH) [2], FastHash [6], binary re-
constructive embedding (BRE) [5], minimal loss hashing
(MLH) [10], supervised quantization (SQ) [14], iterative
quantization (ITQ) [2]. For all algorithms, we use their pub-
lic implementation expect that for SQ we implemented it in
Python as its public implementation is not available.

We use a two-layer neural network with 500-dimensional
hidden layer with weight matrices W, and Wy such that
the transformation function can be expressed as f(x) =
tanh(Wyo tanh(W7x)). We also adopt the kernel based
representation [| 2] for SDH and SQ as it has been shown to
boost the performance.

Parameter Settings. The objective function in (6) has
three trade-off parameters: A for the quantization loss term,

YouTube Faces

FaceScrub

T T T
0.5 = 1TQ

—+— BRE
0.4 KSH
—8- SDH

MAP
MAP

Code length (bits)

(@ (b)

Code length (bits)

Figure 1: Mean average precision for different lengths of
code.

~ for the regularization term and p for penalizing the the
equality constraint term. We set these parameters using a
validation set of size 1,000. The best setting of parameters
are chosen so that the average search performance in terms
of MAP is maximized for the validation set. We preset the p
(the dimension of the discrimintative space) to 128 and « to
1, although tuning them may result in better performance.
Finally, we choose h = 256 to be the dictionary size so that
the each subcenter index (b;;) fits into one byte.

3.2. Datasets

To evaluate our method with the proposed evaluation
protocols, we require datasets with large number of class
labels. Interestingly, face identification benchmarks satisfy
this requirement as we often have hundreds of class labels
in such datasets. For this reason, we use the following two
public face identification benchmarks:

YouTube Faces [15] contains 3,452 videos of 1,595
unique persons. From the videos, 40 faces per person are
selected for the experiments which gives us 63800 images.

FaceScrub [9] includes a total of 106,863 face images
of 530 celebrities, with almost 200 images per person. It is
considered as one of the largest public face datasets.

Following [7], we utilize 236-dimensional LBP feature
vectors to represent the visual content.

3.3. Results and Discussions

To evaluate the performance of different techniques, for
YouTube Faces dataset, we extract 5 images per person
from the videos to form the query set. Therefore, we have
63800 images as the base/training set and 7975 images in
the query set for which the average performance is reported.
Similarly, for the FaceScrube dataset, we select 5 images
per person as the query set and the remaining as the base.

Figure 1 shows the MAP values for different code
lengths. It can be seen that DQ achieves the best perfor-
mance and SQ is the second best among the supervised

compact coding techniques for all code lengths. Also, Fig-
ure | illustrates that quantization based techniques tend
to outperform binary hashing techniques. However, this
comes at the cost of slightly longer query time (not shown)
which is expected as the Hamming distance between binary
codes can be computed extremely fast.

Another observation is that the relative difference be-
tween the performance of DQ and other techniques is more
substantial on the YouTube dataset. Considering that the
number of class labels in YouTube dataset is almost triple
the FaceScrube, we conjecture that DQ tends to exhibit su-
perior performance specially when the number of class la-
bels is large. However, more empirical evaluations are re-
quired to validate this claim.

References

[1] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quanti-
zation. TPAMI, 36(4):744-755, 2014. 2
[2] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-
tive quantization: A procrustean approach to learning binary
codes for large-scale image retrieval. TPAMI, 35(12):2916—
2929, 2013. 3
[3] Z. Hu, J. Chen, H. Lu, and T. Zhang. Bayesian supervised
hashing. In CVPR, 2017. 1
[4] H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. TPAMI, 33(1):117-128,2011. 1
[5] B.Kulis and T. Darrell. Learning to hash with binary recon-
structive embeddings. In NIPS, 2009. 3
[6] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and
D. Suter. Fast supervised hashing with decision trees for
high-dimensional data. In CVPR, pages 1963-1970, 2014.
3
[7] J. Lin, Z. Li, and J. Tang. Discriminative deep hashing for
scalable face image retrieval. In IJCAI, 2017. 4
[8] J. Martinez, S. Zakhmi, H. H. Hoos, and J. J. Little. Lsq++:
Lower running time and higher recall in multi-codebook
quantization. In ECCV, pages 491-506, 2018. 1
[9] H.-W. Ng and S. Winkler. A data-driven approach to clean-
ing large face datasets. In ICIP, pages 343-347, 2014. 4
[10] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-
pact binary codes. In ICML, pages 353-360, 2011. 3
[11] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,
pages 3017-3024, 2013. 1
[12] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised dis-
crete hashing. In CVPR, pages 37-45, 2015. 3
[13] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity
search: A survey. arXiv preprint arXiv:1408.2927, 2014. 1
[14] X. Wang, T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Su-
pervised quantization for similarity search. In CVPR, pages
2018-2026, 2016. 1,3
[15] L. Wolf, T. Hassner, and 1. Maoz. Face recognition in un-
constrained videos with matched background similarity. In
CVPR, pages 529-534,2011. 4
[16] T. Zhang, C. Du, and J. Wang. Composite quantization for
approximate nearest neighbor search. In ICML, pages 838—
846,2014. 2

